
Digital Object Identifier (DOI) 10.1140/epjc/s2003-01444-5
Eur. Phys. J. C 32, 377–380 (2004) THE EUROPEAN

PHYSICAL JOURNAL C

Quantitative duality and neutral kaon interferometry

A. Bramon1, G. Garbarino2, B.C. Hiesmayr1

1 Grup de F́ısica Teòrica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
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Abstract. A quantitative formulation of Bohr’s complementarity principle and interferometric duality is
discussed and applied to the neutral kaon system. Recent measurements by the CPLEAR Collaboration can
be easily interpreted in terms of neutral kaon interferometry, illustrating and confirming those basic principles
of quantum mechanics. The subject can be further investigated at the operational φ-factory Daphne.

1 Introduction

In his well-known Lectures on Physics, Feynman starts
discussing the double-slit experiment as the most charac-
teristic feature of quantum mechanics [1]: “In reality, it con-
tains the only mystery.” After this frequently quoted state-
ment, an idealized but detailed analysis of the double-slit
interference phenomenona is presented in terms of wave–
particle duality, the rules for superposition of amplitudes
and Bohr’s complementarity principle. Somewhat later in
the same Lectures, Feynman proceeds to discuss a particu-
larly illustrative case: the neutral kaon system, for which he
drastically concludes that [1]: “If there is any place where
we have a chance to test the main principles of quantum
mechanics in the purest way – does the superposition of
amplitudes work or doesn’t it? – this is it.” In the present
letter we reconsider these issues with a twofold purpose in
mind. First, we show that a quantitative statement on du-
ality – or “interferometric duality”, as recently suggested
by Englert [2] and reviewed in [3–5] –, which was originally
proposed by Greenberger and Yasin [6], can be clearly il-
lustrated using theK0–K̄0 system. Secondly, this will then
allow us to interpret two CPLEAR experiments on neu-
tral kaons performed at CERN [7–9] as quantitative and
elegant tests of duality and Bohr’s complementarity in a
new arena, which we would like to refer to as “neutral
kaon interferometry”.

2 Quantitative duality

The quantitative expression for Bohr’s complementarity
proposed by Greenberger and Yasin [6] is extremely simple.
In today’s most common notation [2–5], it reads

P2 + V2
0 ≤ 1, (1)

where V0 is the “fringe visibility” which quantifies the
sharpness or contrast of the interference pattern (a wave-

like property), whereas P is the path “predictability” quan-
tifying the a priori “which-way” knowledge one has of the
path taken by the interfering object (its complementary
particle-like property). In commonly used two-path inter-
ferometers – such as single-crystals in neutron interfer-
ometry [6, 10] or their Mach–Zehnder analogs in optical
experiments, e.g. in [11] – one has to deal with two-level
quantum states. They can be expressed as

|Ψ(φ)〉 = a|ψI〉 + b eiφ|ψII〉, (2)

where a and b are positive, a2 + b2 = 1 and |ψI〉 and |ψII〉
represent the states corresponding to the two spatially sep-
arated interferometric paths, with (ideally) 〈ψII|ψI〉 = 0
and a controllable relative phase φ. In the case of symmetric
interferometers (a = b = 1/

√
2), the two paths are taken

with the same probability, thus no a priori “which-way”
knowledge is available, P = 0, and maximal “fringe visi-
bility” is expected, V0 = 1. In asymmetric cases (a �= b),
instead, the expression (1) becomes more interesting and
quantifies the simultaneous wave and particle knowledge
one can have for the interfering object according to Bohr’s
complementarity. Note that we are referring to a priori
knowledge, which is fully contained in the preparation of
the state (2). We thus exclude any possibility of knowledge-
improving measurements (otherwise, another interesting
inequality has been derived by Englert [2] and reviewed
in [3–5]; its applicability to entangled neutral kaon sys-
tems has been recently proposed in [12]). If no knowledge-
improving measurement is performed, the state (2) remains
pure and fully coherent, and expression (1) is then verified
with the equal sign.

The proof of this equality is quite simple, once the
correct definitions and meanings for V0 and P are identified.
The “fringe visibility”, V0, is defined in the usual way as
the coefficient V0 ≡ (Imax − Imin)/(Imax + Imin) of the
phase-dependent term in the expressions

I±(φ) = |〈ψ±|Ψ(φ)〉|2 =
1
2
[1 ± V0 cosφ], (3)
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which give two output intensities in two-channel interfer-
ometers in terms of φ. The amplitudes corresponding to
paths |ψI〉 and |ψII〉 are obtained by a first splitting of
the initial beam and are later recombined before emerging
from the two output ports. Most frequently and in (3),
these two outputs are associated to measurements on the
symmetric and antisymmetric basis states1

|ψ±〉 =
1√
2
[|ψI〉 ± |ψII〉]. (4)

For the coherent superposition (2), rewritten in this
new basis:

|Ψ(φ)〉 =
1√
2

(
a+ b eiφ) |ψ+〉 +

1√
2

(
a− b eiφ) |ψ−〉 , (5)

one easily obtains
V0 = 2ab. (6)

The crucial concept of path “predictability”, P, turned
out to be much harder to identify and was first introduced
in [6]. Denoting by wI and wII the probabilities for taking
either one of the two interferometric paths, P is defined as

P ≡ |wI − wII| =
∣∣a2 − b2

∣∣ , (7)

where the final equality is specific of our pure state (2).
From (6) and (7), the desired equality,

P2 + V2
0 = 1, (8)

follows immediately. The use of the path “predictability”
P introduced in [6] and defined in (7) – as opposed to
other measures of “which-way” knowledge, as those intro-
duced in [14] or in the theoretical-information approaches
of [10,11,15] (for a critical discussion, see [16]) – has been
crucial in order to derive (8). This equality can then be
viewed as a modern and quantitative statement of Bohr’s
complementarity principle for pure states like (2).

3 Neutral kaon system

Pure states of neutral kaons have been copiously prepared
at CPLEAR [7–9] using proton–antiproton annihilations at
rest, pp̄ → K−π+K0 or pp̄ → K+π−K̄0, where strangeness
conservation in the strong interactions requires that a K−
has to be accompanied by a K0 and a K+ by a K̄0. In free
space, the initially produced K0 and K̄0 evolve in proper
time τ according to the well-known expressions [17]

|K0(τ)〉 =

√
1 + |ε|2√
2(1 + ε)

[
e−iλSτ |KS〉 + e−iλLτ |KL〉] ,

|K̄0(τ)〉 =

√
1 + |ε|2√
2(1 − ε)

[
e−iλSτ |KS〉 − e−iλLτ |KL〉] ,

1 The photon experiment of [13] is an excellent example on
the usefulness of the optical analogs of these basis states in a
context related to ours

where ε is the (small) CP -violation parameter, λS,L ≡
mS,L − i

2ΓS,L and mS,L and ΓS,L are the masses and decay
widths of the short- or long-lived states, KS or KL. By
normalizing to kaons surviving up to time τ , the previous
states can be more conveniently rewritten as

|K0(τ)〉 =
1√

1 + e−∆Γτ

[
|KS〉 + e− 1

2 ∆Γτe−i∆mτ |KL〉
]
,

(9)

|K̄0(τ)〉 =
1√

1 + e−∆Γτ

[
|KS〉 − e− 1

2 ∆Γτe−i∆mτ |KL〉
]
,

where ∆m ≡ mL − mS, ∆Γ ≡ ΓL − ΓS and, even if one
strictly has 〈KS|KL〉 = (ε+ ε∗)/(1+ |ε|2) � 3.2×10−3, we
neglect this small CP -violation effect by taking KS and
KL as orthogonal states, 〈KS|KL〉 = 0.

The situation then mimics perfectly that of the two-
path interferometers previously discussed and admits the
same formalism. The approximation 〈KS|KL〉 = 0 just
introduced corresponds to the (similarly approximate) two-
path orthogonality 〈ψI|ψII〉 = 0, and the states (9) are
particular cases of the state (2) with

a =
1√

1 + e−∆Γτ
, b =

1√
1 + e+∆Γτ

,

φ = −∆mτ or π −∆mτ.

Similarly, within our CP -conserving approximation, the
strictly orthogonal {K0, K̄0} basis is related to the {KS,KL}
basis by

|K0〉 =
1√
2
[|KS〉 + |KL〉], |K̄0〉 =

1√
2
[|KS〉 − |KL〉],

(10)
in close analogy with (4). In this {K0, K̄0} basis one has

|K0(τ)〉 = (11)

1√
2

[
1 + e− 1

2 ∆Γτe−i∆mτ

√
1 + e−∆Γτ

|K0〉 +
1 − e− 1

2 ∆Γτe−i∆mτ

√
1 + e−∆Γτ

|K̄0〉
]
,

|K̄0(τ)〉 = (12)

1√
2

[
1 − e− 1

2 ∆Γτe−i∆mτ

√
1 + e−∆Γτ

|K0〉 +
1 + e− 1

2 ∆Γτe−i∆mτ

√
1 + e−∆Γτ

|K̄0〉
]
,

thus mimicking (5). For the “fringe visibility” and the a pri-
ori “predictability” one now obtains the time-dependent ex-
pressions:

V0(τ) =
2√

2 + e−∆Γτ + e+∆Γτ
=

1
cosh

( 1
2∆Γτ

) , (13)

P(τ) =
∣∣∣∣ 1
1 + e−∆Γτ

− 1
1 + e+∆Γτ

∣∣∣∣
= tanh

∣∣∣∣12∆Γτ
∣∣∣∣ , (14)
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which obviously verify for all values of τ the time-dependent
version of (8):

P(τ)2 + V0(τ)2 = 1, (15)

as expected for pure states such as |K0(τ)〉 and |K̄0(τ)〉.
The physical interpretation of these kaonic results seems

unique and quite obvious. As soon as a K0 or a K̄0 is
produced by strangeness-conserving strong interactions, it
starts propagating in free space in the coherent superpo-
sition (10) of the |KS〉 and |KL〉 components. These two
components, which evolve in time without oscillating into
each other, decrease exponentially at remarkably different
decay rates (ΓS � 579ΓL). The |KS〉 and |KL〉 states are
thus the analogs of the two separated paths |ψI〉 and |ψII〉
(associated with particle-like behaviour) in usual interfer-
ometers, with 〈KL|KS〉 � 〈ψII|ψI〉 � 0. Much in the same
way as the probabilities for taking each one of the two
paths are not equal in asymmetric interferometers, the
probabilities for |KS〉 or |KL〉 propagation are similarly
different except at τ = 0. Indeed, for undecayed kaons
surviving up to τ > 0 one knows that (slowly decaying)
|KL〉 propagation is more likely than its (much faster de-
caying) alternative |KS〉. One has an a priori knowledge or
“predictability” on the actual propagation path, which is
merely a consequence of knowing the state one is dealing
with, as in the case of asymmetric interferometers.

The role of “fringe visibility” in ordinary interferome-
try (associated to the complementary wave-like behaviour)
is played by the well-known phenomenon of strangeness
oscillations in the neutral kaon case. As previously men-
tioned, in ordinary interferometers (such as those of [10,11])
the two amplitudes corresponding to the |ψI〉 and |ψII〉
paths have to be recombined before emerging from the
two output ports, where a projective measurement in the
{ψ+, ψ−} basis is performed. In the neutral kaon case
one takes advantage of the strong analogy between the
bases (4) and (10), and of the fact that the amplitudes for
|KS〉 and |KL〉 propagation are automatically recombined
if a projective measurement in the {K0, K̄0} basis, corre-
sponding to strangeness S = ±1, is performed. There are
two independent and time-honoured methods for perform-
ing these measurements (a short historical review may be
found in [7]) and both have been successfully used by the
CPLEAR collaboration, as we now proceed to discuss.

4 CPLEAR experiments

In a recent CPLEAR experiment [7], K0–K̄0 oscillations
have been observed via strangeness measurements mon-
itored by kaon–nucleon strong interactions. The previ-
ously mentioned proton–antiproton annihilation processes,
pp̄ → K−π+K0 or pp̄ → K+π−K̄0, were used to produce
initial |K0〉 or |K̄0〉 states, which were allowed to propa-
gate in free space. The strangeness of the states |K0(τ)〉
and |K̄0(τ)〉, (11) and (12), was subsequently measured at
different proper times τ . This was achieved by inserting
a 2.5 cm thick carbon absorber which allowed one to de-
tect neutral kaon interactions with nucleons in the time

interval 1.3–5.3 τS. The number of K0 and K̄0 interacting
with the absorber’s bound nucleons via K0 + p → K+ +n
(thus projecting on the |K0〉 state) or, alternatively, via
K̄0 + n → K− + p, K̄0 + n → π0 + Λ(→ π− + p) (pro-
jecting on |K̄0〉) were carefully recorded together with the
vertex position or interaction time τ . An asymmetry pa-
rameter, Astrong

∆m (τ), conveniently minimizing some exper-
imental uncertainties, was then defined (see (5) in [7]) and
used to extract a value for ∆m – fully compatible with
other measurements– by fitting the time dependence of
these data.

These findings, however, admit an independent and im-
mediate interpretation in terms of the “kaon interferome-
try” we are discussing. Indeed, the measured asymmetry
parameter, Astrong

∆m (τ), can be easily rewritten as

Astrong
∆m (τ) =

2V0(τ) cos(∆mτ)
1 + V2

0 (τ) cos2(∆mτ)
,

with V0(τ) = 1/ cosh (∆Γτ/2), as given in (13). In other
words, the CPLEAR data [7] can be viewed as the suc-
cessful measurement of the “fringe visibility” of strangeness
oscillations according to our discussion. By jointly consid-
ering these V0(τ) measurements with the complementary
“which-path” information P(τ) – which is simply given
by inserting the observed interaction time τ and the well-
known values of ΓS and ΓL in (14)–, these CPLEAR results
are seen to fulfil the statement for quantitative duality, (15),
for the whole range of τ -values 1.3–5.3 τS.

In another CPLEAR experiment [8], equivalent results
were obtained and the whole picture is confirmed. Here
strangeness oscillations were observed by detecting semi-
leptonic neutral kaon decays. According to the well-tested
∆S = ∆Q rule, the K0 → e−π+ν̄ and K̄0 → e+π−ν de-
cays are forbidden and, therefore, whenever observed, these
semileptonic final states have to be necessarily associated
with weak decays from K̄0 and K0 states, respectively.
This represents an independent method of strangeness
measurement and a new asymmetry parameter, Aweak

∆m (τ)
((2) in [8]), can be defined in such a way that (3) be-
comes I±(τ) = [1 ± Aweak

∆m (τ)]/2. The Aweak
∆m (τ) measure-

ment shows again a characteristic oscillatory τ -dependence
and has been fitted to extract an independent value for∆m,
in agreement with the present world average and even hav-
ing the same accuracy. Alternatively, one can reinterpret
these results as before. Indeed, assuming no violation of
the ∆S = ∆Q rule, one easily finds

Aweak
∆m (τ) = V0(τ) cos(∆mτ) =

cos(∆mτ)
cosh

( 1
2∆Γτ

) ,
as required by (13). Again, using these CPLEAR data to
extract values of V0(τ) and P(τ) would confirm the validity
of (15) from τ � 1.5 τS to τ � 20 τS.

Prompt strangeness measurement events at τ << τS,
for which one predicts V0(τ << τS) � 1 and P(τ << τS) �
0, were not performed by the CPLEAR collaboration. Note,
however, that both sets of CPLEAR data include measure-
ments around τ = 1.8 τS showing a contrasted oscillatory
behaviour [V0(τ = 1.8 τS) � 0.7] because the available
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information on which component, KS or KL, is actually
propagating is still incomplete [P(τ = 1.8 τS) � 0.7] and
cannot be in any way increased. Indeed, these observed
neutral kaons have been converted into another hadron or
a semileptonic final state once their strangeness has been
measured as in [7] and [8], respectively. Conversely, kaons
surviving up to τ � 5 τS (or more) are known to propagate
asKLs almost for sure [P(τ � 5 τS) � 1]. Indeed, the prob-
ability that a KS survives up to 5 τS reduces to a few per
thousand, which is of the same order as the CP -violation
effects we are systematically neglecting, and thus beyond
the accuracy of our present approximate treatment. Con-
sequently, the contrast of strangeness oscillations is seen
to disappear when approaching these larger τ -values.

5 Conclusions

In our view, the previous discussion exemplifies in a clear
way the concept of quantitative duality, for which a gen-
eral formulation has been recently proposed by Englert
in the following terms [2]: “Duality –The observation of
an interference pattern and the acquisition of which-way
information are mutually exclusive.”

As anticipated by Feynman’s quotations in the Intro-
duction, the extension of these ideas to “neutral kaon inter-
ferometry” is extremely simple and illustrative. The tran-
sition from maximal “fringe visibility” at τ = 0 – with
no information on which component actually propagates
– to the opposite extreme case, τ >> τS, allows one to
cover the intermediate stages automatically by measuring
strangeness at intermediate times τ . This leads to simple τ -
dependent expressions for V0(τ) and P(τ) in terms of∆Γ τ ,
whereas the oscillatory term itself is exclusively driven by
∆mτ . In this sense, neutral kaon interference experiments
in free space are universally governed by these two well-
determined parameters alone: ∆Γ and ∆m. Note however
that the time dependence of V0(τ) and P(τ), which cannot
be avoided for unstable kaons, is specific of our context2. It
allows for further and independent tests of basic principles
in terms of (15)3.

To the best of our knowledge, only the neutron ex-
periments of [10] and the photon experiment of [11] have
attempted to test these ideas. In both cases, an older ver-
sion of the interferometric duality – which was originally
introduced in [15] and, according to [16], involves a less
satisfactory measure of the “which-way” information (the

2 Note also that, thanks to its similarities with the K0K̄0

system, the same discussion as in Sect. 3 applies to the B0B̄0

system. The main difference is due to the values of the B-
meson parameters, for which experimentally one only knows
that |∆ΓB | << ∆mB . The number of oscillations that one
can observe is thus much larger than in the kaon case, where
|∆Γ | � 2 ∆m

3 Most frequently, experiments are expected to test (8) [rather
than (15)] where V0 and P are constants in a given experimen-
tal set-up. A curious exception is the optical interferometer
proposed in [18], where the “fringe visibility” is found to have
the same functional dependence (in space) as (13) (in time)

information-theoretical “lack of knowledge” rather than
“predictability”) – was used.

In conclusion, we have shown that two CPLEAR exper-
iments, which admit a transparent interpretation in terms
of (15), are fully consistent with this equality. Further ex-
periments at the operational φ-factory Daphne [19], which
copiously produces neutral kaons via strong φ → K0K̄0

decays, are going to be of interest.
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